
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 J

an
ua

ry
 2

02
4 
royalsocietypublishing.org/journal/rspb
Research
Cite this article: Sutherland C, Hare D,
Johnson PJ, Linden DW, Montgomery RA,

Droge E. 2023 Practical advice on variable

selection and reporting using Akaike

information criterion. Proc. R. Soc. B 290:
20231261.

https://doi.org/10.1098/rspb.2023.1261
Received: 6 June 2023

Accepted: 31 August 2023
Subject Category:
Ecology

Subject Areas:
ecology

Keywords:
information criterion, ecology, model selection,

p-value, variable selection
Author for correspondence:
Chris Sutherland

e-mail: css6@st-andrews.ac.uk
© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6834928.
Practical advice on variable selection
and reporting using Akaike information
criterion

Chris Sutherland1, Darragh Hare2,3, Paul J. Johnson2, Daniel W. Linden4,
Robert A. Montgomery5 and Egil Droge2,6

1Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
2Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Oxford, UK
3Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
4Northeast Fisheries Science Center, NOAA National Marine Fisheries Service, Woods Hole, MA, USA
5Department of Biology, University of Oxford, Oxford, UK
6Zambian Carnivore Programme, Mfuwe, Zambia

CS, 0000-0003-2073-1751; DH, 0000-0003-4418-9637; PJJ, 0000-0001-6160-9045;
DWL, 0000-0002-7117-189X; RAM, 0000-0001-5894-0589; ED, 0000-0002-2642-3859

The various debates around model selection paradigms are important, but in
lieu of a consensus, there is a demonstrable need for a deeper appreciation of
existing approaches, at least among the end-users of statistics and model
selection tools. In the ecological literature, the Akaike information criterion
(AIC) dominates model selection practices, and while it is a relatively
straightforward concept, there exists what we perceive to be some
common misunderstandings around its application. Two specific questions
arise with surprising regularity among colleagues and students when inter-
preting and reporting AIC model tables. The first is related to the issue of
‘pretending’ variables, and specifically a muddled understanding of what
this means. The second is related to p-values and what constitutes statistical
support when using AIC. There exists a wealth of technical literature
describing AIC and the relationship between p-values and AIC differences.
Here, we complement this technical treatment and use simulation to develop
some intuition around these important concepts. In doing so we aim to pro-
mote better statistical practices when it comes to using, interpreting and
reporting models selected when using AIC.
1. Motivation
The debates around the use of p-values to identify ‘significant’ effects [1,2],
Akaike information criterion (AIC) for selecting among models [3,4] and opti-
mal model selection strategies [5] are lively, and in some cases divisive. In
lieu of a consensus on these ongoing debates, we avoid the inherent theoretical
and philosophical arguments and focus instead on the need for practical
approaches and a deeper appreciation by end-users of how to interpret them
and when to apply them [6]. Specifically, we address two questions that we
encounter with surprising regularity in interactions with colleagues and stu-
dents that are often prompted by seemingly misguided comments received
during the peer-review process. These questions are:

1. What are ‘pretending’ parameters and how do they influence AIC model
ranking?

2. Why is the p-value of an effect in the AIC-top model not always
‘significant’?

A variety of information criteria with different properties can be used to
rank models, including the ‘deviance’ (DIC), ‘Bayesian’ (BIC) and ‘widely
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applicable’ (WAIC) information criteria [7–9]. Here, we focus
on AIC as it currently dominates the ecological literature [10],
although we suggest its properties are not always carefully
considered when applied [7]. We acknowledge that there is
a wealth of published information on multi-model inference
and the use of AIC (e.g. [11]). We also acknowledge important
contributions by Arnold [12] and Leroux [13] who succinctly
and accessibly highlight the issue of uninformative parameters
using ecological examples and provide guidance on how to
identify uninformative parameters. Despite this, however, we
often encounter many users from awide range of backgrounds
with an apparently muddled understanding of what it means
for parameters to be ‘uninformative’, how to handle such
parameters, and why this matters. Similarly, how model rank-
ings emerge, and how to interpret models and the covariate
effects included in them, are a continuing source of confusion.
Here we use the valuable tool of simulation to provide a
cognitive device to increase clarity and intuition around
model and parameter selection using AIC [6].

For clarity, and to introduce some terminology, AIC is
calculated as

AIC ¼ 2k � 2‘,

where k is the number of parameters in the model and
‘ ¼ lnðL̂Þ is the log-likelihood of the data under the model.
Simply put, AIC has two components: −2ℓ is the deviance,
a measure of model fit that is a function of the likelihood of
the model given a set of parameter values, and 2k is twice
the number of parameters in the model and is, hence, a
measure of model complexity. AIC, therefore, achieves parsi-
mony via a fit-complexity trade-off and is used as a relative
measure to compare and rank several competing models fit
to the same data, where the model with the lowest AIC is
considered the best [11].
2. On pretending
When using AIC to compare two models that are identical
except for a single term, there are two possible outcomes.
Take the following for example:

yi ¼ b0 þ 1i

and

yi ¼ b0 þ b1Xi1 þ 1i:

We use β to denote regression parameters, X are covariates
and 1 are observation-specific residuals which are, in the
case of this linear model that assumes Gaussian errors,
normally distributed,

1i � Normalð0, s2Þ:
The first of these models is commonly referred to as the ‘null’
or ‘intercept-only’ model and has k = 2 parameters, one
parameter for the intercept, β0, and one parameter for the
residual variance, σ. The second model includes one additional
covariate, and hence one additional parameter, β1, which is
estimated effect of a unit change in the covariate on the
response. The second model, therefore, has k = 3 parameters,
the two regression parameters and the residual variance. We
note that there is some inconsistency in the literature and
between software in whether the residual variance parameter
is formally included as part of the parameter count.
If the additional covariate (X1) is statistically important,
i.e. it explains enough variation in the response to warrant
being considered when drawing inference, the model will
generally have a lower AIC despite the two-unit penalty for
the one additional parameter, and thus be ranked higher. If,
on the other hand, the covariate has no association at all
with the response, the likelihood will increase given that
adding parameters will improve the fit of the model by
explaining some of the randomness, but the penalty of the
additional parameter will mean that the model will generally
have a higher AIC. The latter is referred to as a ‘pretending’
variable [11], and the result is a model including a completely
uninformative term will appear competitive as it will be
within 2 AIC units of the model without that parameter
[12,14]. In these cases, strategies are provided to address
these uninformative terms [12,13], all of which recommend
that models containing such terms should not be blindly
accepted as being statistically supported.

One approach to better understanding this issue is
through simulation. Here we simulate a response variable,
y, that is positively associated with one explanatory variable,
X1, and that has no association with a second explanatory
variable, X2. The model we simulate from is

yi ¼ b0 þ b1X1i þ b2X2i þ 1i

and

1i � Normalð0, s2Þ:
For this illustration we simulate 150 observations of y under
this model using an intercept of β0 = 30, a positive X1 effect,
β1 = 1, and a standard deviation of the residual error of
σ = 3. We ensure that X2 has no influence by setting β2 = 0.
The covariates X1 and X2 are uniform [− 2, 2] random
values resembling standardized covariates (figure 1). We
note here that the code to conduct all the simulations in
this paper is available as a supplement [15].

With a single response variable and two covariates, and
not considering any interactions, we can fit the following
four models and rank them using AIC in conditions where
truth is known. They are the ‘full’ or ‘global’ model (m3),
and all nested models including the ‘null’ or ‘intercept-only’
model (m0),

m0: yi ¼ b0 þ 1i

m1: yi ¼ b0 þ b1X1 þ 1i

m2: yi ¼ b0 þ b2X2 þ 1i

and m3: yi ¼ b0 þ b1X1 þ b2X2 þ 1i:

Here, m0 is the intercept-only, or null, model, m1 is the
data-generating model and models m2 and m3 are models
containing the uninformative parameter as either the only
covariate or a second covariate, respectively.

Simulation furnishes us with perfect knowledge so we
can fit models to simulated data and explore model rankings
in the context of the known parameter redundancy. Looking
at the AIC model rankings (table 1), the model with an unin-
formative parameter, m3, increases the likelihood relative to
m1, the data-generating model and is, therefore, a better fit,
and it has an AIC very close to the top model (ΔAIC =
1.95), suggesting some degree of support [11]. The improve-
ment in terms of likelihood is expected: adding parameters
improves model fit, but the fact the model performs similarly
when ranked by AIC is exactly the 2 AIC problem described by
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Figure 1. Simulated relationships between the response variable y and two covariates. The effect of X1 is positive (β1 = 1), and X2 has no effect (β2 = 0). Black
points are simulated data points, the blue line is the estimated relationship from a univariate linear model with the focal covariate as the predictor. The shaded areas
are corresponding 95% CIs around the expected relationship. Note that although the simulated effect size of X2 was 0, the regression slope is not perfectly
horizontal; hence X2 will often explain a small amount of variation in the data simply by chance.

Table 1. Model selection table from a single iterated simulation where models are ranked by AIC from lowest (AIC-top) to highest. The table includes the
number of parameters, K; both AIC and ΔAIC which is AIC minus the lowest AIC and the negative log-likelihood, L.

model description K L AIC ΔAIC

m1 data-generating model 3 −368.05 742.27 0.00

m3 data-generating + uninformative term 4 −367.97 744.22 1.95

m0 intercept-only model 2 −379.83 763.73 21.46

m2 uninformative term only 3 −379.43 765.03 22.76
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Arnold [12]. Indeed, AIC penalizes model complexity by 2
AIC units per additional term, so when we recognize that
the model with the uninformative term is the AIC-top
model plus a term that offers no meaningful additional infor-
mation about the response and instead soaks up some of the
randomness, blindly ranking models using AIC alone allows
uninformative parameters to infiltrate the conversation about
variable importance. This is clearly shown here where we
have simulated a response variable with no relationship
with X2 (β2 = 0), and yet the model that includes X2 has a
ΔAIC of 1.95 (table 1).

In the example above, we simulated a single dataset from
the model, and using a different seed value in the supplemen-
tary code could produce a situation with different ΔAIC
values. Thus, while this single iteration offers a nice demon-
stration, it is instructive to simulate many more iterations to
examine the expected pattern from the hypothetical data and
model formulation. Thus, we stochastically simulate 1000 data-
sets under the same data-generating model and record the
difference in AIC between models that include both the infor-
mative and uninformative terms and the AIC-top model
(i.e. DAICm3 ), noting that if DAICm3 . 0 then m3 is ranked
below the top model, and if DAICm3 ¼ 0 m3 is the top
model. We also compute the difference in AIC between the
model that includes the uninformative term only, m2, and the
null model, m0, which is again, a comparison of two models
that differ only by the single uninformative term (DAICm2�m0 ).
First, considering DAICm3 (figure 2a), we see that the
difference in AIC is not always exactly 2 (range: 0–2.11),
which is what we might have expected when adding a
single uninformative term and incurring a 2 unit penalty.
This variation reflects the stochastic data-generating process
akin to sampling variation in real-world data collection.
The same pattern emerges for DAICm2�m0 (figure 2b). In
most cases m2 has a higher AIC and is thus ranked lower
than the null model. However, just by chance, y can be corre-
lated with X2 which results in a relatively large reduction
(improvement) in AIC; as much as DAICm2�m0 ¼ �10:53. As
a result, the AIC differences have a much wider range for
DAICm2�m0 (range: −10.53–2.08), although the majority of
cases have DAICm2�m0 . 0.

Interestingly, and seemingly counter to the point we are
making, there are instances where m3, the model featuring
the uninformative term, has a lower AIC than the data-gener-
ating model, and is actually the top ranked model, shown by
the truncation at 0 (figure 2a). This is the case in 12.8% of the
simulations. The result is mirrored for DAICm2�m0 : using AIC
to rank models, the model with a single uninformative term
is also ranked higher than the null model in 13.8% of the
simulations. These are false positives (Type I errors) which
we will return to in the next section.

So, through simulation, where the truth is known, we
have demonstrated that uninformative terms can appear in
models that receive some support when using established
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Figure 2. Comparisons of AIC differences between two indicative pairs of models. The first comparison (a) is the difference between m3, the data-generating model
with the uninformative parameter included, and the top model. This histogram has a mass at 0 representing simulations where m3 was the top model. The second
comparison is the ΔAIC between the null model (m0) and the model with only the uninformative term (m2). To facilitate comparison, we truncated the x-axis of (b)
at −2 which removes the 4% of the data lying between −2 and approximately −12.

Table 2. Model coefficient table from the AIC-top model selected from the
single iterated simulation. Each row is a parameter in the model, and the
columns are the maximum-likelihood estimate and the corresponding
standard error (s.e.) t-statistic (t-value) and p-value (Pr(>|t|)).

estimate s.e. t-value Pr(>|t|)

(intercept) 30.28 0.23 130.48 0.00

X1 1.00 0.20 4.93 0.00

X2 −0.08 0.21 −0.40 0.69

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20231261

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 J

an
ua

ry
 2

02
4 
rules of thumb [14]. We need not rely exclusively on decoding
AIC model tables to identify pretending variables, though. It
follows, and hopefully now in an intuitive way, that the esti-
mate of the effect size should be informative about whether a
variable is pretending. Indeed, despite being included in a
highly ranked model, the uninformative parameter in our
simulated example has a large p-value suggesting a lack of
statistical support (p = 0.69, table 2). The estimate of the
effect of X1 is estimated without bias and, in contrast, has a
p-value that suggests convincing evidence of an effect, i.e.
as being significant (p≪ 0.05, table 2). It would appear here
that we are ‘mixing paradigms’ by using p-values to interpret
AIC-based model selection [16], but in fact, there is an explicit
link between AIC differences and p-values. Neatly, this often
underappreciated relationship [1,12] holds the answer to the
second common question: Why is the p-value of an effect in
the AIC-top model not always ‘significant’?
3. On ‘significance’
Many will be familiar with the likelihood ratio test (LR test) and
its use as a method to select between two models. Returning
to the situation where we wish to compare two models that
are identical except for a single term, say Model A and
Model B that has one additional parameter, or our m1
versus m3 above, the LR test is applied by first computing a
likelihood ratio statistic,

lLR ¼ �2ð‘A � ‘BÞ,

which is −2 times the difference in the log-likelihoods of the
two models. This statistic is assumed to be Chi-squared distrib-
uted with degrees of freedom being the difference in the
number of parameters, which in this case is q = 1. If the test
statistic is greater than some a priori defined critical value,
then the null hypothesis, that there is no improvement with
the added complexity, is rejected and the more complex
Model B has support. The critical value is defined by the sig-
nificance level, α, which in the vast majority of cases is set to
0.05, i.e. the p-value will be equal to or below 0.05 when the
test statistic is equal to or greater than the critical value.

What is interesting, and often underappreciated, at least
in practical applications of AIC-based model comparisons,
is that comparing models using AIC is closely related to the
likelihood ratio test. For example, based on the equation for
AIC given above, the difference in AIC scores between two
models, or the ΔAIC, can be rewritten in terms of λLR,

DAICB ¼ AICB �AICA

¼ ð2kB � 2‘BÞ � ð2kA � 2‘AÞ
¼ 2ðkB � kAÞ � 2ð‘B � ‘AÞ
¼ 2q� 2ð‘A � ‘BÞ
¼ 2q� lLR:

When q = 1, i.e. model B has one more parameter than Model
A, then Model B ranks higher than Model A when ΔAIC < 2,
or in other words, when λ is at least 2. Under the Chi-square
distribution with one degree of freedom, this corresponds to a
significance level of p = 0.157. This is generally true for large
samples sizes (e.g. n/k > 40 see [12]), and a more thorough
treatment of this equivalence can be found elsewhere (e.g.
[1]). Nevertheless, model selection using AIC in this simple
case can be seen as functionally equivalent to conducting a
likelihood ratio test with a more liberal significance level of
p = 0.157 rather than p = 0.05. This also implies that for a
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Figure 3. The relationship between DAICm3�m1 , which is the difference
between m3 and m1, and the p-value of β2. Vertical dashed lines are
added at the conventional significance level of p = 0.05 (left), and at p =
0.157 (right), which is the threshold for obtaining a lower AIC than a
nested model without the additional term. These thresholds define two rel-
evant information zones: the green shaded is the zone of no confusion where
AIC and p-values will select the same variable, and the grey area is the zone
of confusion, where AIC will select variables that have p-values less than or
equal to 0.157 but greater than 0.05. When DAICm3�m1 ¼ 0 (the solid
horizontal line), then m3 is the top ranked model based on AIC ranking.
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parameter to improve theAICrelative to amodelwithone fewer
terms, it would require p < 0.157 and not the conventional p <
0.05.1 In contrast to the uninformative variables, i.e. those that
are not important but appear in top performing models by
association only, we refer to variables that appear in the top
model but have a p > 0.05 as confusing variables. We use this
term specifically to reflect a confusion that arises when mixing
the p-value and AIC model selection paradigms [16].

This idea can be seen using the simulation results from
the previous section. To do so, we use the comparison of
the data-generating model (m1) and the data-generating
model with a one additional term (m3), noting that even
though the effect of the additional parameter was β2 = 0,
there can be correlation between the response and X2 just
by chance. Plotting the p-value of β2 against the difference
in AIC between models m3 and m1, an almost deterministic
relationship emerges (figure 3). The result clearly shows
that m3, the model including the additional covariate X2,
was always ranked as the top model, i.e. DAICm3 ¼ 0 when
the p-value for β2 is less than or equal to 0.157, which is
exactly as expected given the equivalence described above.

We can explore this behaviour further using a more
complex data-generating model. Consider the following
linear model with six covariates:

yi ¼ b0 þ b1X1i þ b2X2i þ � � � þ b6X6i þ 1i

and

1i � Normalð0, s2Þ:

As above, β0 is the intercept and σ is the standard deviation of
the residual error. This time, however, we have six covariates,
and therefore six regression coefficients, i.e. β1,…, β6. For this
demonstration, we simulate a dataset of 200 observations
under the model above using β0 = 30, σ = 3, and the values
for β1,…, β6 are 1,−0.5, 0.25,−0.1, 0, 0, respectively. So,
here, the first four covariates have non-zero effects that
decrease in magnitude, while the effect of the last two
covariates is set to 0 (figure 4).

Our aimhere is to demonstrate that, based on the ideas pre-
sented above, it should come as no surprise that models that
are selected based on having the lowest AIC values can, and
should contain variables that have p-values that are greater
than 0.05, but also that none of the variables featured in the
AIC-top model will have a p-value greater than 0.157 (pro-
vided the null model is included in the model set). To do so,
we fit the full model to one realization of simulated data, i.e.
the model including all six covariates, and then use AIC to
find the model with the lowest AIC, which we refer to as the
‘top model’. Estimates from the full model are shown in
table 2 along with the coefficient p-values. We also report
the standard 95% CI corresponding to the 0.05 significance
level and the 85% CI that correspond approximately to the
0.157 significance level and indicate whether each effect is
retained in the AIC-top model. Parameters with p < 0.157 are
retained in the AIC-top model which would, if viewed
through the lens of α = 0.05, seem counterintuitive at first
glance, but when considered in the context of the equivalence
described above, it is in fact expected (table 3).

An interesting conundrum emerges here: if an AIC model
selection approach is adopted, is a 95% CI the most appropri-
ate interval to report in tables and figures? We believe that
reporting 95% CIs often draws a reader’s (or reviewer’s)
attention to whether these intervals overlap zero, and if
they do, which they regularly do for covariates in model
selected using AIC, whether the effect is ‘significant’ in the
traditional α = 0.05 sense. The inevitable questioning of
whether a term should be reported as being important
despite having 95% intervals that overlap 0 is, we believe, a
second source of confusion that arises from the underappre-
ciation of the link between AIC-based model selection and
p-values. This apparent misunderstanding of variable selec-
tion using AIC can be alleviated quite easily by first
understanding the equivalence, but also by reporting either
only the 85% interval, consistent with the model selection
strategy, or the 85% interval along with the more commonly
reported 95% interval, and in both cases providing an explicit
statement about the 85% interval being consistent with how
variables are selected when using AIC [12] (e.g. figure 5).

It is important to note that another strategy for interpret-
ation of all parameters, not just confusing ones, is to focus
on relative effect sizes. Doing so, parameters that suggest
strong evidence for relationships can be highlighted, while
those with weak evidence, which is typical of confusing
parameters, are given less attention. This is illustrated in our
example where, although models containing parameters 3
and 4 were supported by lower AIC values, the effect sizes
were smaller than parameters 1 and 2, and there was a greater
chance that the true effect size could have been the opposite
direction of our point estimates. This nuance is particularly
important for studies using observational data, where in any
single study, many measured and unmeasured relationships
are likely to be at play to varying degrees of importance [5].
4. Summary
We recognize that many common statistical practices are
misleading, regardless of the technical accuracy with which
they are executed and described [6]. Many of our ecology
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Figure 4. Simulated relationships between the response variable y and six covariates. The effects of X1 to X6 are β = (1,−0.5, 0.25,−0.1, 0, 0), respectively. Black
points are simulated data points, the blue line is the estimated relationship from univariate linear model with the focal covariate as the single predictor, and the
shaded areas are 95% CIs around the expected relationship.

Table 3. Coefficient estimates from the full model with corresponding p-values, 95% and 85% CIs, and whether or not the variable was selected in the top
AIC model. The p-values are coloured as green if p < 0.05, orange if 0.05 < p < 0.157, and red if p > 0.157. The estimates, confidence intervals and p-values
are slightly different for the reduced model selected by AIC, and full model tables from both models are provided in electronic supplementary material, tables
S1 and S2.

95% CI 85% CI

covariate estimate lower upper lower upper p-values AIC top

1 0.85 0.607 1.084 0.671 1.021 0.000 ✓

2 −0.75 −0.997 −0.506 −0.931 −0.572 0.000 ✓

3 0.22 −0.015 0.457 0.048 0.394 0.067 ✓

4 −0.17 −0.401 0.064 −0.339 0.002 0.154 ✓

5 −0.14 −0.388 0.106 −0.322 0.040 0.262 ×

6 0.07 −0.185 0.329 −0.116 0.260 0.581 ×
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and conservation science colleagues and students who ident-
ify as end-users of statistical methods are either unaware of,
or admit confusion about, the details of how variables are
selected when using AIC to select models. This stems from
a more general underappreciation of the explicit link between
AIC differences and p-values. Motivated by what we perceive
to be an avoidable misunderstanding about these practically
important features of AIC model selection, we presented an
unapologetically non-technical demonstration of these key
ideas using simulation, with the aim of promoting better stat-
istical practices when it comes to using, interpreting and
reporting models selected when using AIC. Through this
demonstration, we have attempted to develop some intuition
around four important concepts that we hope go some way
towards achieving these aims.

1. Pretending variables/uninformative parameters. Ranking nested
models using AIC amounts to ranking by deviance with a
complexity penalty related to the number of parameters.
This means that models that are structurally similar to a
‘top’ model, but that contain covariates that explain very
little or none of the variation in the data, can rank highly in
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Figure 5. Coefficient plot where the thick and thin horizontal lines are the covariate-specific 85% and 95% CIs, respectively. Red lines show estimates under the full
model where all six covariates are included in the model and, as such, coefficients for all covariates are estimated, and transparency is added to estimates with 95%
CIs that overlap 0. Blue lines are the estimates obtained from the model with the lowest AIC; this model does not contain all covariates and therefore has missing
estimates. The vertical line is at 0. The 85% CI is reported as it is consistent with how terms are selected under the AIC-based model selection criteria.
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model selection tables (table 1). These are what have been
described as ‘pretending’ [11] or ‘uninformative’ [12,13]
variables, andwhilewedonot provide anynovel recommen-
dations for handling these cases, we provide clarity on how
they manifest and encourage readers to adopt existing rec-
ommendations [12,13], but with a renewed appreciation for
their relevance when interpreting model selection tables.

2. AIC–p-value equivalence. There is a close and explicit link
between the likelihood ratio test and AIC differences
(the ΔAIC). In terms of comparing models, the key differ-
ence amounts to the confidence threshold being used;
specifically that, unlike the more commonly applied and
accepted threshold of p < 0.05, model selection by AIC is
functionally equivalent to defining a more liberal signifi-
cance level of p < 0.157. This equivalence has been
highlighted previously [1,3], but is probably more
appreciated among statisticians than the majority of, for
example, applied ecologists or conservation practitioners
who regularly engage in statistical analyses that involve
formally comparing among models. In contrast to the
existing technical literature, we explore the equivalence
through simulation, in an attempt to provide an accessible
and intuitive appreciation of how these two apparently
conflicting variable selection paradigms are closely linked.

3. Confusion. Unlike the uninformative parameter (see 1), we
introduced a second type of parameter that we find to be
a source of uncertainty—a confusing parameter. The
confusion we are drawing attention to is the apparent
‘non-significance’ of a variable in the top model, which
will be transparent if p-values are reported. The confusion
arises from mixing model selection paradigms and incor-
rectly using p < 0.05 thresholds to interpret variable
importance in AIC-top models [11]. We have shown that
the difference in significance thresholds implied by the
two approaches (see 2) means that, in contrast to the
α = 0.05 viewpoint, parameters will appear in AIC-top
models if they have a p-value below amore liberal threshold
of α = 0.157. We also note that when reporting parameter
estimates, an additional but related problem arises if 95%
CIs for these confusing parameters as the intervals will
span zero. This is regularly interpreted as lack of support
for an effect, in linewith thewidespread tendency to dichot-
omize predictors as either ‘significant’ or ‘not significant’.
Whether or not this is good practice, it is clear from the
preceding exploration that 85%CIs are perhapsmore appro-
priate to describe uncertainty for parameter estimates in
models selected using AIC values. We note also that an
examination of effect sizes (relative to other parameters) is
crucial for the interpretation of confusing parameters while
acknowledging that only additional data can clarify the
relationships suggested by the model.

4. Reporting. By highlighting some of the key similarities and
differences between two of the mainstream approaches
available to end-users for selecting among models and
identifying variable importance, we recommend that the
statistical reporting should be consistent with the specific
selection paradigm used. For example, because any confi-
dence interval of a parameter estimate from most standard
statistical models can be constructed from the standard
error, we suggest reporting standard errors in addition
to confidence intervals. Moreover, if confidence intervals
are reported or plotted, we recommend being explicit
about which intervals are reported and why, and ensuring
that the intervals used reflect the model selection strategy
used. For example, when using AIC for model selection,
reporting either only the 85% interval, which is consistent
with the model selection strategy, or both the 85% and the
more commonly reported 95% interval, but in both cases
unnecessary confusion about the use of so-called ‘uncon-
ventional’ intervals can be avoided by explicitly justifying
why they are reported. Plotting multiple intervals (as we
did in figure 5) can make clear how the results fit within



Table 4. Coefficient table from the ‘well-switching’ model of Gelman et al.
[18] showing the maximum-likelihood estimates, standard errors and
associated p-values for the four parameters. Note that the distance ×
arsenic interaction term is not significant at the 5% level, but as seen in
table 5, is in the top model when using AIC (i.e. it is a ‘confusing’ or
‘pretending’ variable).

parameter estimate s.e. p-value
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the context of more than one inferential perspective,
giving readers the option for multiple interpretations.

We conclude with one final consideration, which is that AIC is
not always the optimal tool for a given modelling exercise [5].
AIC can tend to favour complex models due to its default
prior model weighting, a fact that seems underappreciated [7]
given how often the properties of AIC as a model selection
criterion do not align with the objectives of a published study.
AIC was popularized among ecologists in part as a method to
address the potential structure of complex observational
processes in hierarchical models of natural systems [11]. It is
intended for making predictive inferences, not necessarily
causal assertions. Our goal here is not to expound on the justifi-
cations forAIC in ecological applications, but insteadwe simply
hope to enable better statistical practices when using this tool.
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intercept −0.148 0.118 0.20838

distance −0.578 0.209 0.00579

arsenic 0.556 0.069 0.00000

distance × arsenic −0.179 0.102 0.08040
Endnote
1We take the liberty of omitting technical detail linking the p-value of
the model comparison and the p-value of the additional model coef-
ficient, but the current presentation works as a cognitive device.
Table 5. AIC model selection table comparing AIC scores for two formulations of th
arsenic interaction, and a model without the interaction term. Here, the model w
analysis.

model AICc no. parameters

interaction 3935.64 5

no interaction 3936.68 4
Appendix A. A brief illustrative example
We briefly discuss a textbook example that highlights some of
the points we have addressed in the simulation exercise in the
main text. This example is particularly interesting because the
original application did not actually employ AIC. Gelman
et al. [18] illustrate a ‘well-switching’ problem that uses logistic
regression to estimate the probability that a household in
Bangladesh would switch from a home drinking well to a
nearby alternative based on the level of toxic arsenic contami-
nation in the home well. The simple two-variable model finds
that both arsenic level and distance to an alternative well are
significant predictors (p≪ 0.05). An interaction between arsenic
and distance is added to the model (i.e. one term is added) with
equivocal results, suggesting the interaction may not be needed.

In replicating the example (see code below), we note that
parameter estimates using maximum likelihood (table 4)
closely match the Bayesian posterior distributions (Gelman
et al. [18]; section 14.2). The interaction term has a p-value of
p = 0.08, making it non-significant at an alpha of 0.05, yet as
expected, the additional term improves the AIC enough to
make it the top model (table 5). In this example, the authors
use different model selection criteria to conclude that the
additional term does not change the predictive performance
and is, therefore, unnecessary. However, it is still plausible for
the interaction to be describing a true relationship (figure 6).
Further interpretation could acknowledge the effect sizes as
indicating weak evidence for the interaction.
e ‘well-switching’ model of Gelman et al. [18]: a model with a distance ×
ith the interaction term is preferred when using AIC, unlike in the original

AICc AIC weight log-likelihood

0.00 0.63 −1963.81
1.00 0.37 −1965.33

https://doi.org/10.17605/OSF.IO/PTCB5
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Figure 6. Predicted probability of switching wells as a function of distance to the nearest alternative (a) and arsenic levels (b). For each predictor, the predictions are
made at the mean, and plus and minus 1 standard deviation of the other.
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Appendix B. R code to reproduce the ‘well
switching’ analysis
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